Western Greenbrier Co-production Demonstration Project

Benefits Presentation

Clean Coal Power Initiative - Round 1 -

Demonstration of an 98 MWe Alstom Compact Inverted Cyclone, Circulating Fluidized-Bed Combustor in a Co-production Facility

Nelson Rekos – Major Projects Division National Energy Technology Laboratory

Outline

- Executive Summary
- Project Information
 - Plant, fuel, location, cost, and schedule
 - Team members
 - Circulating Fluidized-Bed (CFB) Process
 - Combustion Utilization By-products (CUB)
 - Unique contribution
 - Anjean Dump Site: Existing Site Conditions

Outline (continued)

Estimated Benefits

- Approach
- Market penetration assumptions
- Pollutant reductions
- Total emissions
- Regional
- Anjean annotated topographic map
- National

Conclusions

Executive Summary

- Demonstration projects are critical to successful commercialization of technology developed under U.S. Department of Energy Fossil Energy R&D program
- Facility will employ CFB combustor technology burning waste coal
 - Environmental safeguards will place it among the cleanest and most cost-effective coal-burning electric generation facilities
- Western Greenbrier Co-production Demonstration Project success will set an example for remediation and recovery of many legacy waste coal dumps produced from historic coal mining and preparation operations

Executive Summary (continued)

- Project carries potential for enormous environmental and economic benefits throughout coal mining areas with existing waste coal dumps
- West Virginia Department of Environmental Protection (DEP)
 - Estimates 300 to 400 million tons of waste coal in dumps across southern part of state
 - Identified waste coal dumps as state's number one environmental hazard
- Dumps impose ongoing costs in containment, neutralization of acid runoff, and assurance of integrity of containment structures
 - Estimates to eliminate dumps run as high as \$2 to \$3 billion

Executive Summary (continued)

- Along with its 98 MWe plant, Western Greenbrier will produce CUB for potential use as building materials and for use in acid mine waste neutralization
- In addition to its technological and environmental benefits, this project will provide an income stream to three small communities that will own it, as well as provide lasting, quality jobs
- An "Eco-Park" is visualized using steam and hot water supplied by co-production facility
 - Products could include vegetables and tilapia, a fastgrowing food fish suitable to "fish farm" operations

Project Information

Plant, Fuel, Location, Cost, and Schedule

- A new 98 MWe Alstom CFB combustor fires waste coal recovered from abandoned coal dumps
- Waste coal is recovered and cleaned to reduce the ash content and increase the Btu value before delivery to power plant
- Location: Rainelle, Greenbrier County, WV
- Project cost: \$215 million;
 DOE share: \$107.5 million
- Schedule:
 - 2004 Project start
 - 2007 to 2009 Construction
 - 2010 Completion

Project Information (continued) Team Members

Western Greenbrier Co-generation, LLC

 Project, sited in Rainelle, will be structured as a municipal entity owned by neighboring WV towns of Rainelle, Quinwood and Rupert

Alstom Power (Windsor, CT)

- Will provide power island
- Hazen Research (Golden, CO)
 - Will develop ash by-product processes and facilities design

Project Information (continued) Circulating Fluidized-Bed (CFB) Process

- CFB systems differ from other combustors in that fuel particles are fed into lower portion of combustor, along with a solid sorbent (limestone), where initial combustion occurs
- As fuel particles decrease in size due to combustion, they are carried higher in the furnace
- As particles shrink, fuel and some sorbent is collected in a cyclone separator
- This material is recycled to lower portion of combustor

Project Information (continued) Circulating Fluidized-Bed (CFB) Process

- With continuous fresh coal and limestone feed, ash material is drawn off at bottom of combustor to control the amount of solids in the loop
- Steam is generated in tubes placed along walls of combustor keeping temperatures between 1,500° and 1,700°F through a large heat exchange surface, thus limiting NO_x formation
- Primary purpose of limestone is to absorb sulfur from coal as it is released from combustion, thereby reducing oxides of sulfur (SO_x) present in flue gas
- Any NO_X and SO_X remaining after cyclone are further reduced by selective non-catalytic reduction (SNCR) and wet lime scrubbing, respectively

Project Information (continued) Circulating Fluidized-Bed (CFB) Process Schematic

Project Information (continued) Combustion Utilization By-products (CUB)

- CUB (ash) from Western Greenbrier can be marketed
 - Project generates a class "C" ash, having adequate calcium and is quite pozzolanic, and is useful for construction materials
 - Local coals typically form a class "F" ash, having a low calcium content and must be bolstered with calcium via limestone
- Limestone from the Lewisburg, WV area is available for
 - Bolstering type "F" ash
 - Sulfur capture in the CFB

Project Information (continued) Unique Contribution

- This CFB combustor features a unique "inverted" cyclone separator and a mid-support structure with these benefits:
 - 40% smaller boiler footprint with a lower overall building height, decreasing overall structural steel tonnage by 60%
 - Less direct construction labor
 - Self-supporting assembly process for enhanced construction safety and reduced costs
 - Overall construction time cut by 6-8 weeks
- Possible "Eco-Park" to use steam and hot water from project

View of overall site, looking southeast

Project Information (continued) Anjean Dump Site: Existing Site Conditions

Access Road

1.5 miles to abandoned prep plant 2.5 miles to large refuse piles

1000 Feet

Note: Elevation varies on the site from 3300+/- to 3800 +/-The property is split between the watersheds of Big Clear Creek and Little Clear Creek Prepared For: Western Greenbrier Co-Generation, LLC Prepared By: Potesta & Associates, Inc. October 17, 2002

Estimated Benefits *Approach*

- Forecast market penetration
- Quantify differences between conventional power plants with and without CFB technology being demonstrated

Estimated Benefits (continued) Market Penetration Assumptions

- West Virginia DEP estimates 300 to 400 million tons of waste coal in existing dumps across southern West Virginia
- Potential market throughout all coal mining areas in United States
 - Assume source of limestone is available, if needed, to promote type "C" pozzolanic ash formation
 - Assume regional market for type "C" pozzolanic ash product

Estimated Benefits (continued) Pollutant Reductions

- Mitigating waste coal dumps reduces acid runoff and facilitates land reclamation
- Treated CFB ash is useful
 - As a construction material
 - As a cement additive
 - To apply to waste coal dumps to neutralize acid runoff

Estimated Benefits (continued) Total Emissions

Estimated Benefits (continued) *Regional*

 West Virginia DEP spends \$250,000 each year monitoring and treating runoff from Anjean dump

Mitigating Anjean's approximately
 4 million tons of waste coal and

coal fines dump (largest in West Virginia) would be environmentally beneficial and cost-effective

Waste Coal Dump

Estimated Benefits (continued) Regional

- Project will bring high-quality jobs to economically challenged area of southern West Virginia
 - Construction will bring an influx of skilled labor as well as employment for local labor
 - Plant operations will create permanent jobs for local residents
 - Envisioned "Eco-Park" will contribute jobs to local economy
- Waste coal dumps like Anjean will be recovered for beneficial use
 - Area residents want to reclaim
 Anjean waste coal dump for use
 as a community park and recreation
 area (see annotated map)

Project Information (continued) *Anjean Annotated Topographic Map*

Estimated Benefits (continued) *National*

- Project constitutes a model for private industry, local, state, or federal organizations to eliminate liabilities from legacy coal mining and preparation operations in a manner that profits rather than costs taxpayers
 - West Virginia could save \$2 to \$3 billion
 - Other coal producing states will benefit from applying this technology to waste coal dumps

Conclusions

- Land reuse and CUB benefits of Western Greenbrier Co-production Demonstration Project will:
 - Encourage building electric power plants at former mining facilities needing reclamation
 - Enable unusable land to be reclaimed for commercial use throughout the nation
 - Mitigate abandoned mine spoils and associated environmental problems
 - Provide economic benefits for local communities in mine spoil areas

Reclaimed Land

Visit the NETL web site for information on all Power Plant Improvement Initiatives and Clean Coal Power Initiative projects

www.netl.doe.gov/technologies/coalpower/cctc

